Exercícios selecionados

1, 2, 4, 6, 8, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 26, 27, 28, 29, 30, 38, 39, 40

Problemas Propostos

Para cada uma das parábolas dos problemas de 1 a 10, construir o gráfico e encontrar o foco e uma equação da diretriz.

1)
$$x^2 = -4y$$

$$x^2 + y = 0$$

7)
$$x^2 - 10y = 0$$

1)
$$x^2 = -4y$$
 4) $x^2 + y = 0$ 7) $x^2 - 10y = 0$ 10) $x = -\frac{y^2}{8}$

2)
$$y^2 = 6x$$

5)
$$y^2 - x = 0$$

2)
$$y^2 = 6x$$
 5) $y^2 - x = 0$ 8) $2y^2 - 9x = 0$

3)
$$y^2 = -8x$$

6)
$$y^2 + 3x = 0$$
 9) $y = \frac{x^2}{16}$

9)
$$y = \frac{x}{1}$$

Nos problemas de 11 a 26, tracar um esboco do gráfico e obter uma equação da parábola que satisfaça as condições dadas.

- 11) vértice: V(0, 0); diretriz d: v = -2
- 12) foco: F(2, 0); diretriz d: x + 2 = 0
- 13) vértice: V(0, 0); foco: F(0, -3)
- 14) vértice: V(0, 0); foco: $F(-\frac{1}{2}, 0)$
- 15) foco: $F(0, -\frac{1}{4})$; diretriz d: 4y 1 = 0
- 16) vértice: V(0, 0); simetria em relação ao eixo dos y e passa pelo ponto P(2,-3)
- 17) vértice: V(0, 0); eixo y = 0; passa por (4,5)
- 18) vértice: V(-2, 3); foco: F(-2, 1)
- 19) vértice: V(2, -1); foco: F(5, -1)
- 20) vértice: V(4, 1); diretriz d: y + 3 = 0
- 21) vértice: V(0, -2); diretriz: 2x 3 = 0
- 22) foco: F(4, -5); diretriz: y = 1
- 23) foco: F(-7, 3); diretriz: x + 3 = 0
- 24) foco: F(3, -1); diretriz: 2x 1 = 0
- 25) vértice: V(4, -3); eixo paralelo ao eixo dos x, passando pelo ponto P(2, 1)
- 26) vértice: V(-2, 3); eixo: x + 2 = 0, passando pelo ponto P(2, 0)

Em cada um dos problemas de 27 a 36, determinar a equação reduzida, o vértice, o foco, uma equação da diretriz e uma equação do eixo da parábola de equação dada. Esboçar o gráfico.

27)
$$x^2 + 4x + 8y + 12 = 0$$

28)
$$x^2 - 2x - 20y - 39 = 0$$

29)
$$y^2 + 4y + 16x - 44 = 0$$

30)
$$y^2 - 16x + 2y + 49 = 0$$

31)
$$y = \frac{x^2}{4} - 2x - 1$$

32)
$$x^2 - 12y + 72 = 0$$

33)
$$y = x^2 - 4x + 2$$

34)
$$y = 4x - x^2$$

35)
$$y^2 - 12x - 12 = 0$$

36)
$$2x^2 - 12x - y + 14 = 0$$

Nos problemas de 37 a 39, encontrar a equação explícita da parábola que satisfaca as condições:

- 37) eixo de simetria paralelo ao eixo dos y e passando pelos pontos A(-2, 0), B(0, 4) e C(4, 0).
- 38) eixo de simetria paralelo a x = 0 e passando pelos pontos A(0, 0), B(1, -1) e C(3, -1).
- 39) eixo paralelo a y = 0 e passando por A(-2, 4), B(-3, 2) e C(-6, 0).
- 40) Dada a parábola de equação $y = -x^2 + 4x + 5$, determinar:
 - a) o vértice:
 - b) as interseções com os eixos coordenados:
 - c) o gráfico;
 - d) o foco:
 - e) uma equação da diretriz.

Nos problemas de 41 a 44, obter equações paramétricas da parábola de equação dada.

41)
$$y^2 = -4x$$

43)
$$(x+4)^2 = -2(y-1)$$

42)
$$x^2 = 2y$$

44)
$$y^2 - 4y + x + 1 = 0$$

Nos problemas 45 e 46, obter uma equação geral da parábola dada por equações paramétricas.

45)
$$\begin{cases} x = t + 1 \\ y = \frac{t^2}{3} - 2 \end{cases}$$

$$46) \begin{cases} x = \frac{t^2}{4} + 4 \\ y = t \end{cases}$$

- 47) Em que pontos a parábola de vértice V(-2, 0) e foco F(0, 0) intercepta o eixo dos y?
- 48) Encontrar sobre a parábola $y^2 = 4x$ um ponto tal que sua distância à diretriz seja igual a 3.
- 49) Utilizar a definição para encontrar uma equação da parábola de foco e diretriz dados:
 - a) F(-3, 4);
 - d: y = 2
 - b) F(0, 3);
 - d: x-2 = 0
- 50) Determinar uma equação da curva gerada por um ponto que se move de modo que sua distância ao ponto A(-1, 3) seja igual à sua distância à reta y + 3 = 0.
- 51) Encontrar uma equação da parábola e suas interseções com os eixos coordenados, sendo dados:
 - a) foco: F(0, 0), eixo: y = 0 e passa por A(3, 4);
 - b) foco: F(0, -1), eixo: x = 0 e passa por A(4, 2).

52) Na Figura 8.21, o arco DC é parabólico e o segmento AB está dividido em 8 partes iguais. Sabendo que d = 10 m, AD = BC = 50 m e AB = 80 m, determinar h_1 e h_2 .

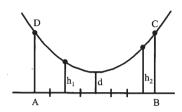


Figura 8.21

- 53) Uma família de parábolas tem equação $y = ax^2 + bx + 8$. Sabendo que uma delas passa pelos pontos (1,3) e (3,-1), determinar:
 - a) os pontos de interseção com o eixo dos x:
 - b) os pontos de ordenada 15;
 - c) equações paramétricas desta parábola.
- 54) Dados os sistemas de equações paramétricas

$$\begin{cases} x = \sqrt{2t} \\ y = t+3, & t \in [0, 8] \end{cases} e \begin{cases} x = -t \\ y = \frac{t^2}{2} + 3, & t \in [-4, 0], \end{cases}$$

mostrar que eles representam parte de uma mesma parábola, esbocando o gráfico.

Respostas de Problemas Propostos

1) F(0, -1), y = 1

- 7) $F(0, \frac{5}{2}), 2y+5=0$
- 2) $F(\frac{3}{2}, 0)$, 2x + 3 = 0
- 8) $F(\frac{9}{8}, 0)$, 8x + 9 = 0

3) F(-2,0), x=2

9) F(0,4), y+4=0

4) $F(0, -\frac{1}{4}), y = \frac{1}{4}$

- 10) F(-2, 0), x = 2
- 5) $F(\frac{1}{4}, 0)$, $x = -\frac{1}{4}$ 11) $x^2 = 8y$
- 6) $F(-\frac{3}{4}, 0), 4x 3 = 0$

13)
$$x^2 = -12v$$

20)
$$x^2 - 8x - 16y + 32 = 0$$

14)
$$y^2 = -2x$$

21)
$$y^2 + 4y + 6x + 4 = 0$$

15)
$$x^2 = -v$$

22)
$$x^2 - 8x + 12y + 40 = 0$$

16)
$$3x^2 + 4y = 0$$

23)
$$y^2 - 6y + 8x + 49 = 0$$

17)
$$4y^2 - 25x = 0$$

24)
$$4v^2 + 8v - 20x + 39 = 0$$

18)
$$x^2 + 4x + 8y - 20 = 0$$

25)
$$y^2 + 6y + 8x - 23 = 0$$

19)
$$y^2 + 2y - 12x + 25 = 0$$

26)
$$3x^2 + 12x + 16y - 36 = 0$$

27)
$$x^{12} = -8y^{1}$$
, V(-2, -1), F(-2, -3), $y = 1$,

$$x = -2$$

28)
$$x^{12} = 20y^{1}$$
, $V(1, -2)$, $F(1, 3)$, $y = -7$,

29)
$$y^{2}=-16x$$
, $V(3,-2)$, $F(-1,-2)$, $x=7$,

$$v = -2$$

30)
$$y^{12}=16x^{1}$$
, $V(3,-1)$, $F(7,-1)$, $x=-1$,

31)
$$x^{12} = 4y^{1}$$
, $V(4, -5)$, $F(4, -4)$, $y = -6$,

$$x = 4$$

32)
$$x^{2}=12y$$
, $V(0,6)$, $F(0,9)$, $y=3$,

32)
$$x'^2 = 12y'$$
, $V(0, 0)$

$$x = 0$$

33)
$$x^{2} = y'$$
,

33)
$$x^{12} = y^{1}$$
, $V(2, -2)$, $F(2, -\frac{7}{4})$, $y = -\frac{9}{4}$,

34)
$$x^{12} = -y^{1}$$
,

$$(2,-2), \quad F(2,-\frac{1}{4}), \quad y=-\frac{1}{4},$$

34)
$$x^{12} = -y^{1}$$
, $V($

34)
$$x^{2} = -y'$$
, $V(2, 4)$, $F(2, \frac{15}{4})$, $4y-17 = 0$, $x-2 = 0$

35)
$$y^{12}=12x^{1}$$
, V(-1, 0), F(2, 0), $x=-4$,

$$(2,0), x = -$$

$$v = 0$$

$$y = 12x, \quad \forall (-1, 0),$$

$$x^{2} = \frac{1}{2} x^{2}, \quad \forall (2, 4).$$

36)
$$x^{2} = \frac{1}{2}y'$$
, $V(3, -4)$, $F(3, -\frac{31}{8})$, $8y + 33 = 0$, $x = 3$

37)
$$y = -\frac{1}{2}x^2 + x + 4$$

38)
$$y = \frac{1}{3}x^2 - \frac{4}{3}x$$

39)
$$x = -\frac{1}{4}y^2 + 2y - 6$$

d)
$$F(2, \frac{35}{4})$$
 e) $4y - 37 = 0$

$$41) \begin{cases} x = -\frac{1}{4}t^{2} \\ y = t \end{cases}$$

46)
$$y^2 - 4x + 16 = 0$$

48)
$$(2, \sqrt{8})$$
 e $(2, -\sqrt{8})$

$$\begin{cases} x = t \\ y = \frac{t^2}{} \end{cases}$$

49) a)
$$x^2+6x-4y+21=0$$

b) $y^2-6y+4x+5=0$

$$50) x^2 + 2x - 12y + 1 = 0$$

43)
$$\begin{cases} x = t - 4 \\ y = 1 - \frac{t^2}{2} \end{cases}$$

51) a)
$$y^2 - 4x - 4 = 0$$
, (-1, 0), $(0, \pm 2)$
b) $x^2 - 4y - 8 = 0$, $(\pm 2\sqrt{2}, 0)$, $(0, -2)$

44)
$$\begin{cases} x = 3 - t^2 \\ y = t + 2 \end{cases}$$

52)
$$h_1 = 20m e h_2 = 32,5m$$

53) a)
$$(2, 0)$$
 e $(4, 0)$
b) $(-1, 15)$ e $(7, 15)$
c) $x = t + 3$ e $y = t^2 - 1$

45)
$$x^2 - 2x - 3y - 5 = 0$$

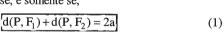
ELIPSE

Definicão

Elipse é o conjunto de todos os pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante.

Consideremos no plano dois pontos distintos, F₁ e F₂, tal que a distância $d(F_1, F_2) = 2c$, e um número real positivo a com 2a > 2c.

Chamando de 2a a constante da definição, um ponto P pertence à elipse (Figura 8.22) se, e somente se,



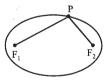


Figura 8.22