Exercícios selecionados

1, 2, 7, 9, 11a, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32

Problemas Propostos

Em cada um dos problemas de 1 a 10, esboçar o gráfico e determinar os vértices A_1 e A_2 , os focos e a excentricidade das elipses dadas.

1)
$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$

6)
$$4x^2 + 9y^2 = 25$$

2)
$$25x^2 + 4y^2 = 100$$

7)
$$4x^2 + y^2 =$$

3)
$$9x^2 + 16y^2 - 144 = 0$$

8)
$$4x^2 + 25y^2 = 1$$

4)
$$9x^2 + 5y^2 - 45 = 0$$

9)
$$x^2 + 2y^2 - 5 = 0$$

5)
$$x^2 + 25y^2 = 25$$

10)
$$9x^2 + 25y^2 = 25$$

11) Esboçar o gráfico de uma elipse de excentricidade

a)
$$\frac{1}{2}$$

b)
$$\frac{1}{3}$$

c)
$$\frac{3}{5}$$

Em cada um dos problemas de 12 a 19, determinar uma equação da elipse que satisfaça as condições dadas. Esboçar o gráfico.

- 12) focos F_1 (-4, 0) e F_2 (4,0), eixo maior igual a 10;
- 13) focos $F_1(0,-5)$ e $F_2(0,5)$, eixo menor igual a 10;
- 14) focos $F(\pm 3, 0)$ e vértices $A(\pm 4, 0)$;
- 15) focos F(0, ±3) e excentricidade $\frac{\sqrt{3}}{2}$;
- 16) vértices A(± 10 , 0) e excentricidade $\frac{1}{2}$;
- 17) centro C(0, 0), eixo menor igual a 6, focos no eixo dos x e passando pelo ponto $(-2\sqrt{5}, 2)$;
- 18) vértices $A(0, \pm 6)$ e passando por P(3, 2);
- 19) centro C(0, 0), focos no eixo dos x, $e = \frac{2}{3}$ e passando por P(2, $-\frac{5}{3}$).

Em cada um dos problemas de 20 a 27, obter uma equação da elipse que satisfaça as condições dadas.

20) centro C(1, 4), um foco F(5, 4) e excentricidade $\frac{2}{3}$;

190 Vetores e Geometria Analítica

- 21) eixo maior igual a 10 e focos $F_1(2, -1)$ e $F_2(2, 5)$;
- 22) focos $F_1(-1, -3)$ e $F_2(-1, 5)$ e excentricidade $\frac{2}{3}$;
- 23) focos $F_1(-3, 2)$ e $F_2(3, 2)$ e excentricidade $\frac{1}{2}$;
- 24) vértices A₁(-7, 2) e A₂(-1, 2) e eixo menor igual a 2;
- 25) centro C(0,1), um vértice A(0,3) e excentricidade $\frac{\sqrt{3}}{2}$;
- 26) centro C(-3, 0), um foco F(-1, 0) e tangente ao eixo dos y;
- 27) centro C(2, -1), tangente aos eixos coordenados e eixos de simetria paralelos aos eixos coordenados.

Em cada um dos problemas de 28 a 33, determinar a equação reduzida, o centro, os vértices A_1 e A_2 , os focos e a excentricidade das elipses dadas. Esboçar o gráfico.

28)
$$9x^2 + 16y^2 - 36x + 96y + 36 = 0$$

29)
$$25x^2 + 16y^2 + 50x + 64y - 311 = 0$$

30)
$$4x^2 + 9y^2 - 24x + 18y + 9 = 0$$

31)
$$16x^2 + y^2 + 64x - 4y + 52 = 0$$

32)
$$16x^2 + 9y^2 - 96x + 72y + 144 = 0$$

33)
$$4x^2 + 9y^2 - 8x - 36y + 4 = 0$$

Nos problemas de 34 a 39, obter equações paramétricas da elipse de equação dada.

34)
$$x^2 + 4y^2 = 4$$

37)
$$9(x-1)^2+25(y+1)^2=225$$

35)
$$x^2 + y^2 = 36$$

38)
$$49(x+7)^2 + y^2 = 7$$

36)
$$9x^2 + 16v^2 = 1$$

39)
$$4x^2 + 9y^2 - 54y + 45 = 0$$

Nos problemas de 40 a 43, obter uma equação geral da elipse dada por equações paramétricas.

$$40) \begin{cases} x = 5\cos\theta \\ y = 5\sin\theta \end{cases}$$

42)
$$\begin{cases} x = 2 + 4 \cos x \\ y = 3 + 2 \sin x \end{cases}$$

41)
$$\begin{cases} x = \cos \theta \\ y = 3 \operatorname{sen} \end{cases}$$

43)
$$\begin{cases} x = \sqrt{2} \cos \theta \\ y = -1 + \sin \theta \end{cases}$$

- 44) Determinar os focos da elipse de equações $x = 4 + 3\cos t$ e $y = -2 + 5\sin t$.
- 45) Determinar uma equação da curva gerada por um ponto que se move, de modo que a soma de suas distâncias aos pontos (4, -1) e (4, 7) seja sempre 12.

Cap. 8 Cônicas 191

- 46) Determinar uma equação da curva gerada por um ponto que se move, de modo que sua distância ao ponto A(3, -2) seja igual à metade de sua distância à reta y -2 = 0.
- 47) Determinar uma equação da elipse de centro (0, 0), eixo maior sobre o eixo dos v. sabendo que passa pelos pontos P(1, $\sqrt{14}$) e O(2, -2 $\sqrt{2}$).
- 48) Encontrar uma equação da elipse de centro (0, 0), eixo maior sobre Ox, excentricidade $\frac{1}{2}$ e que passa pelo ponto (2, 3).
- 49) Determinar uma equação das circunferências inscrita e circunscrita à elipse de equação dada.
 - a) $16x^2 + v^2 16 = 0$
 - b) $4x^2 + 9y^2 32x + 36y + 64 = 0$
- 50) Um satélite de órbita elíptica e excentricidade $\frac{1}{2}$ viaja ao redor de um planeta situado num dos focos da elipse. Sabendo que a distância mais próxima do satélite ao planeta é de 300 km, calcular a major distância.

Respostas de Problemas Propostos

- 1) A(± 5 , 0), F($\pm \sqrt{21}$, 0), e = $\frac{\sqrt{21}}{5}$
- 6) $A(\pm \frac{5}{2}, 0)$, $F(\pm \frac{5\sqrt{5}}{6}, 0)$, $e = \frac{\sqrt{5}}{2}$
- 2) A(0, ±5), F(0, ± $\sqrt{21}$), e = $\frac{\sqrt{21}}{5}$
- 7) A(0, ±1), F(0, ± $\frac{\sqrt{3}}{2}$), e = $\frac{\sqrt{3}}{2}$
- 3) A(±4, 0), F(± $\sqrt{7}$, 0), e = $\frac{\sqrt{7}}{4}$
- 8) $A(\pm \frac{1}{2}, 0)$, $F(\pm \frac{\sqrt{21}}{10}, 0)$, $e = \frac{\sqrt{21}}{5}$
- 4) $A(0, \pm 3)$, $F(0, \pm 2)$, $e = \frac{2}{3}$ 9) $A(\pm \sqrt{5}, 0)$, $F(\pm \sqrt{\frac{5}{2}}, 0)$, $e = \frac{\sqrt{2}}{3}$
- 5) $A(\pm 5, 0)$, $F(\pm 2\sqrt{6}, 0)$, $e = \frac{2\sqrt{6}}{5}$
- 10) $A(\pm \frac{5}{3}, 0)$, $F(\pm \frac{4}{3}, 0)$, $e = \frac{4}{5}$
- 11) a) Existem infinitas, todas elas com a = 2c e $b = c\sqrt{3}$
- 12) $9x^2 + 25y^2 = 225$

16) $\frac{x^2}{100} + \frac{y^2}{75} = 1$

13) $2x^2 + y^2 - 50 = 0$

17) $x^2 + 4y^2 - 36 = 0$

14) $7x^2 + 16y^2 - 112 = 0$

18) $\frac{8x^2}{81} + \frac{y^2}{36} = 1$

15) $4x^2 + v^2 - 12 = 0$

19) $5x^2 + 9v^2 - 45 = 0$

192 Vetores e Geometria Analítica

- 20) $5x^2 + 9y^2 10x 72y 31 = 0$
- 24) $x^2 + 9y^2 + 8x 36y + 43 = 0$
- 21) $25x^2 + 16y^2 100x 64y 236 = 0$
- 25) $4x^2 + y^2 2y 3 = 0$
- 22) $9x^2 + 5y^2 + 18x 10y 166 = 0$
- 26) $5x^2 + 9y^2 + 30x = 0$

23) $3x^2 + 4y^2 - 16y - 92 = 0$

27) $x^2 + 4y^2 - 4x + 8y + 4 = 0$

28)
$$\frac{{{x'}^2}}{{16}} + \frac{{{y'}^2}}{9} = 1$$
, C(2, -3), A₁(-2, -3), A₂(6, -3), F(2 ± $\sqrt{7}$, -3), e = $\frac{\sqrt{7}}{4}$

29)
$$\frac{x^{12}}{16} + \frac{y^{12}}{25} = 1$$
, C(-1, -2), A₁(-1, -7), A₂(-1, 3), F₁(-1, -5), F₂(-1, 1), e = $\frac{3}{5}$

30)
$$\frac{{{x'}^2}}{9} + \frac{{{y'}^2}}{4} = 1$$
, C(3, -1), A₁(6, -1), A₂(0, -1), F(3 ± $\sqrt{5}$, -1), e = $\frac{\sqrt{5}}{3}$

31)
$$x^{12} + \frac{y^{12}}{16} = 1$$
, C(-2, 2), A_1 (-2, -2), A_2 (-2, 6), F(-2, $2 \pm \sqrt{15}$), $e = \frac{\sqrt{15}}{4}$

32)
$$\frac{{x'}^2}{9} + \frac{{y'}^2}{16} = 1$$
, C(3, -4), A₁(3, -8), A₂(3, 0), F(3, -4 ± $\sqrt{7}$), $e = \frac{\sqrt{7}}{4}$

33)
$$\frac{{{x'}^2}}{9} + \frac{{{y'}^2}}{4} = 1$$
, C(1, 2), A₁(-2, 2), A₂(4, 2), F(1 ± $\sqrt{5}$, 2), e = $\frac{\sqrt{5}}{3}$

34)
$$\begin{cases} x = 2\cos\theta \\ y = \sin\theta \end{cases}$$
 36)
$$\begin{cases} x = \frac{1}{3}\cos\theta \\ y = \frac{1}{4}\sin\theta \end{cases}$$
 38
$$\begin{cases} x = -7 + \frac{\sqrt{7}}{7}\cos\theta \\ y = \sqrt{7}\sin\theta \end{cases}$$

35)
$$\begin{cases} x = 6\cos\theta \\ y = 6\sin\theta \end{cases}$$
 37)
$$\begin{cases} x = 1 + 5\cos\theta \\ y = -1 + 3\sin\theta \end{cases}$$
 39)
$$\begin{cases} x = 3\cos\theta \\ y = 3 + 2\sin\theta \end{cases}$$

- 42) $x^2 + 4y^2 4x 24y + 24 = 0$
- 41) $9x^2 + y^2 9 = 0$
- 43) $x^2 + 2v^2 + 4v = 0$
- 44) (4, 2) e (4, -6)
- 46) $4x^2 + 3y^2 24x + 20y + 48 = 0$
- 45) $9x^2 + 5y^2 72x 30y + 9 = 0$
- 47) $2x^2 + y^2 = 16$

- 48) $3x^2 + 4y^2 = 48$
- 49) a) $x^2 + y^2 = 1$ e $x^2 + y^2 = 16$

b)
$$x^2 + y^2 - 8x + 4y + 16 = 0$$
 e $x^2 + y^2 - 8x + 4y + 11 = 0$

50) 600 km